\(\int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx\) [346]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 20, antiderivative size = 90 \[ \int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx=\frac {d \sqrt {a+c x^2}}{\left (c d^2+a e^2\right ) (d+e x)}-\frac {a e \text {arctanh}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{\left (c d^2+a e^2\right )^{3/2}} \]

[Out]

-a*e*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))/(a*e^2+c*d^2)^(3/2)+d*(c*x^2+a)^(1/2)/(a*e^2+c*
d^2)/(e*x+d)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {821, 739, 212} \[ \int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx=\frac {d \sqrt {a+c x^2}}{(d+e x) \left (a e^2+c d^2\right )}-\frac {a e \text {arctanh}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}} \]

[In]

Int[x/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

(d*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*(d + e*x)) - (a*e*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x
^2])])/(c*d^2 + a*e^2)^(3/2)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 821

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Dist[(c*d*f + a*e*g)/(c*d^2 + a*e
^2), Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0
] && EqQ[Simplify[m + 2*p + 3], 0]

Rubi steps \begin{align*} \text {integral}& = \frac {d \sqrt {a+c x^2}}{\left (c d^2+a e^2\right ) (d+e x)}+\frac {(a e) \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{c d^2+a e^2} \\ & = \frac {d \sqrt {a+c x^2}}{\left (c d^2+a e^2\right ) (d+e x)}-\frac {(a e) \text {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{c d^2+a e^2} \\ & = \frac {d \sqrt {a+c x^2}}{\left (c d^2+a e^2\right ) (d+e x)}-\frac {a e \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{\left (c d^2+a e^2\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.40 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.11 \[ \int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx=\frac {d \sqrt {a+c x^2}}{\left (c d^2+a e^2\right ) (d+e x)}+\frac {2 a e \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )}{\left (-c d^2-a e^2\right )^{3/2}} \]

[In]

Integrate[x/((d + e*x)^2*Sqrt[a + c*x^2]),x]

[Out]

(d*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*(d + e*x)) + (2*a*e*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a + c*x^2])/Sqrt[-
(c*d^2) - a*e^2]])/(-(c*d^2) - a*e^2)^(3/2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(343\) vs. \(2(82)=164\).

Time = 0.42 (sec) , antiderivative size = 344, normalized size of antiderivative = 3.82

method result size
default \(-\frac {\ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}-\frac {d \left (-\frac {e^{2} \sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{\left (e^{2} a +c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}-\frac {e c d \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {\left (x +\frac {d}{e}\right )^{2} c -\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\left (e^{2} a +c \,d^{2}\right ) \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\right )}{e^{3}}\) \(344\)

[In]

int(x/(e*x+d)^2/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2/e*c*d*(x+d/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((x+d/e)^
2*c-2/e*c*d*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))-d/e^3*(-1/(a*e^2+c*d^2)*e^2/(x+d/e)*((x+d/e)^2*c-2/e*c*
d*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)-e*c*d/(a*e^2+c*d^2)/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2/e*c
*d*(x+d/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*((x+d/e)^2*c-2/e*c*d*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e)))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 178 vs. \(2 (83) = 166\).

Time = 0.45 (sec) , antiderivative size = 382, normalized size of antiderivative = 4.24 \[ \int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx=\left [\frac {{\left (a e^{2} x + a d e\right )} \sqrt {c d^{2} + a e^{2}} \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 2 \, {\left (c d^{3} + a d e^{2}\right )} \sqrt {c x^{2} + a}}{2 \, {\left (c^{2} d^{5} + 2 \, a c d^{3} e^{2} + a^{2} d e^{4} + {\left (c^{2} d^{4} e + 2 \, a c d^{2} e^{3} + a^{2} e^{5}\right )} x\right )}}, -\frac {{\left (a e^{2} x + a d e\right )} \sqrt {-c d^{2} - a e^{2}} \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) - {\left (c d^{3} + a d e^{2}\right )} \sqrt {c x^{2} + a}}{c^{2} d^{5} + 2 \, a c d^{3} e^{2} + a^{2} d e^{4} + {\left (c^{2} d^{4} e + 2 \, a c d^{2} e^{3} + a^{2} e^{5}\right )} x}\right ] \]

[In]

integrate(x/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

[1/2*((a*e^2*x + a*d*e)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2
 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + 2*(c*d^3 + a*d*e^2)*sqrt(
c*x^2 + a))/(c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*a*c*d^2*e^3 + a^2*e^5)*x), -((a*e^2*x + a*d*
e)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2 + (c^2*d^
2 + a*c*e^2)*x^2)) - (c*d^3 + a*d*e^2)*sqrt(c*x^2 + a))/(c^2*d^5 + 2*a*c*d^3*e^2 + a^2*d*e^4 + (c^2*d^4*e + 2*
a*c*d^2*e^3 + a^2*e^5)*x)]

Sympy [F]

\[ \int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx=\int \frac {x}{\sqrt {a + c x^{2}} \left (d + e x\right )^{2}}\, dx \]

[In]

integrate(x/(e*x+d)**2/(c*x**2+a)**(1/2),x)

[Out]

Integral(x/(sqrt(a + c*x**2)*(d + e*x)**2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate(x/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F]

\[ \int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx=\int { \frac {x}{\sqrt {c x^{2} + a} {\left (e x + d\right )}^{2}} \,d x } \]

[In]

integrate(x/(e*x+d)^2/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \frac {x}{(d+e x)^2 \sqrt {a+c x^2}} \, dx=\int \frac {x}{\sqrt {c\,x^2+a}\,{\left (d+e\,x\right )}^2} \,d x \]

[In]

int(x/((a + c*x^2)^(1/2)*(d + e*x)^2),x)

[Out]

int(x/((a + c*x^2)^(1/2)*(d + e*x)^2), x)